A simple and convenient approach for preparing core-shell-like silica@nickel species nanoparticles: highly efficient and stable catalyst for the dehydrogenation of 1,2-cyclohexanediol to catechol.

نویسندگان

  • Bao-Hui Chen
  • Wei Liu
  • An Li
  • Ya-Juan Liu
  • Zi-Sheng Chao
چکیده

A simple and convenient approach denoted as gel-deposition-precipitation (G-D-P) for the preparation of core-shell-like silica@nickel species nanoparticles was studied systematically. Core-shell-like silica@nickel species nanoparticles consisted of a Si-rich core and a Ni-rich shell. The G-D-P process included two steps: one was the deposition-precipitation of nickel over the gelled colloidal silica particle, generating core-shell-like silica@nickel species nanoparticles, and the other was the aging period. It was found that the nickel phyllosilicate layer was formed mainly during the aging period and served as the protective cover to resist against aggregation of the nanoparticles, which could be utilized for regulating the dispersion of nickel over the silica@nickel species nanoparticles. In the present paper, the silica@nickel species nanoparticles were used as the catalysts for preparing catechol via dehydrogenation of 1,2-cyclohexanediol. Their catalytic activity and long-term stability were compared to those of a catalyst prepared by a conventional deposition-precipitation (D-P) approach. The higher activity and better stability of the title reaction over the silica@nickel species nanoparticles catalyst prepared by G-D-P than those over the catalyst prepared by D-P could be due to the higher dispersion of metallic nickel stabilized by the layers of nickel phyllosilicates. Moreover, it was found that the dehydrogenation of 1,2-cyclohexanediol to catechol was a structurally sensitive reaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation and Application of Fe3O4@SiO2@OSO3H Nanocomposite as a Green Catalyst for the Synthesis of Octahydroquinazolinones

In this research the magnetite nanoparticles supported silica sulfonic acid(Fe3O4@SiO2@OSO3H) was used as a green and efficient catalyst for the preparation ofoctahydroquinazolinone derivatives as biologically active heterocyclic compounds. Thisprocedure avoids hazardous reagents, solvents, catalyst and can be an eco-friendly alternativeto the existing methods. The one-p...

متن کامل

Highly Sensitive FRET-Based Fluorescence Immunoassay for Detecting of Aflatoxin B1 Using Magnetic/Silica Core-Shell as a Signal Intensifier

Background: Recently, some new nanobiosensors using different nanoparticles or microarray systems for detection of mycotoxins have been designed . However, rapid, sensitive and early detection of aflatoxicosis would be very helpful to distinguish high-risk persons. Objectives: We report a highly sensitive competitive immunoassay using magnetic/silica core shell as a signal intensifier for the d...

متن کامل

Ag/Pt Core-Shell Nanoparticles on Graphene Nanocomposite for Effective Anodic Fuels Electro-oxidation

The nanocomposite consists of the Ag as a core and Pt as shell on the surface of graphene nanosheets (Ag/Pt-G) was synthesized with a simple method and used as a novel electrochemical platform for an efficient catalyst for oxidation of the ethanol, methanol and formic acid. The morphology and electrochemical properties of Ag/Pt-G nanocomposite were investigated by TEM, X-ray diffraction, and vo...

متن کامل

Core–shell titanium dioxide /carbon nanofibers decorated nickel nanoparticles as supports for electrocatalytic oxidation of ethanol

Abstract Recently alcohol fuel cells has been increased consideration because of their environmental friendliness, high energy conversion efficiency and low emissions. Many effort have been made to improve the electro-oxidation performance of alcohols such as methanol, ethanol and propanol. In this work, a new method for ethanol oxidation based on core–shell titanium dioxide / carbon nanofib...

متن کامل

Snail shell as a natural and highly efficient catalyst for the synthesis of imidazole derivatives

A convenient, simple and green process for the synthesis of 2,4,5-triaryl-1H-imidazole and 1,2,4,5-tetraaryl-1H-imidazole derivatives using snail shell, which is abundant in Morocco, as a catalyst in ethanol at 40 °C has been developed. Additionally, short reaction times, excellent yields, simple procedure and relative non-toxicity of the catalyst are other noteworthy advantages and make this m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 44 3  شماره 

صفحات  -

تاریخ انتشار 2015